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AbstrscL The splitting between the two lowest vibronic states in the T @ t~ Jahn- 
W l e r  system is calculated using fwo approximations. The first is analytical and is based 
on an adiabatic one-sheet WKB approximation in which the splitting is due exclusively 
to tunnelling. The second method is numerical and uses cubic states appropriate to 
very slrong coupling which have been derived previously by a transformation method. 
The latter calculation is in direct contrast to other numerical methods which use states 
appropriate to the weatcoupling limit. The second calculation includes both tunnelling 
and ‘hopping’ (non-adiabatic mixing processes), Thus, by subtraction of the mulls lmm 
the two methods, the contributions of tunnelling and ‘hopping‘ 10 the inversion splitting 
can be obtained. The results obtained are analysed in full and compared to other 
published work 

1. Introduction 

One of the important features of some Jahn-Teller (JT) systems, which distinguishes 
them from other systems, is the appearance of another state which has an energy 6 
only slightly higher than the vibronic ground state (of zero energy). This arises in JT 
situations whenever the number of equivalent minima in the lower potential energy 
surface is larger than the orbital degeneracy of the associated electronic state. For 
strongly coupled systems, 6 is often much smaller than the average phonon energy 
tW. Also, it can have a size comparable with the energy splittings induced by other 
electronic perturbations (Ham 1972). Thus its presence should not be overlooked 
in any modelling of the system. It is necessaly, therefore, to attempt as accurate a 
calculation of 6 as possible. 

Originally the names ‘inversion’ or ‘tunnelling’ were often used interchangeably 
to describe this state. The first name arose from the analogous phenomenon that 
exists in the energy spectrum of the ammonium molecule where the equivalent 
configurations are related by inversion. However, in JT systems, this is not the 
case. The name tunnelling was also used because it was thought at first that the 
splitting was caused entirely by tunnelling processes. However, the possibility of 
motion between the minima via excited states by a ‘hopping’ process must also be 
considered. (The term ‘hopping’ will be used to denote non-adiabatic, virtual or 
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vertical excitations involving the excited states.) Thus the term inversion should 
include both tunnelling and ‘hopping’ processes, and it is of considerable interest to 
estimate the separate contributions to 6 from each process in order to gain further 
insight into the underlying physics. This is the subject of this paper which is limited 
to the T @ t2 JT system as it is the simplest example in which an electronic orbital T 
triplet state is coupled to tz phonons. 

It is dficult to undertake an accurate calculation of 6 because there are many 
contributing processes and many approximations have to be made. For example, 
earlier calculations of 6 assumed that all phenomena were describable in terms of 
tunnelling of the system between the various minima in the lowest potential sheet. 
In many of these calculations the adiabatic approximation was used which separated 
the slow nuclear motion, in the mean field of the electrons, from the fast electronic 
motion. Non-adiabatic corrections were sometimes added via perturbation theory. 

The paper is organized as follows. Section 2 gives a brief summary of some 
of the relevant literature. Section 3 describes an analytical derivation of 6 for 
the T@ tz JT system using the WKB approximation which has not been presented 
previously. This is now possible as the method of incorporating the phase changes 
that arise in moving through Q-space are now known (Berry 1984) for the T @ tZ 
system (O’Brien 1989, Ham 1990). This calculation includes all one-sheet adiabatic 
effects, namely the anharmonicity and anisotropy of the wells and tunnelling but 
not hopping. In this way, the WKB method gives an exact asymptotic value of the 
tunnelling splitting 6 for the strong-coupling limiting case. Section 4 describes a 
numerical method using as basis states the strong-coupling vibronic states derived by 
the transformation method introduced by Bates et a1 (1987) and Dunn (1988). This 
approach does not suffer from the cut-off problems associated with other numerical 
calculations in the strong-coupling case as these basis states are exact in the infinite- 
coupling limit. Furthermore, this approach contains all the above contributions to 
6 but also implicitly and additionally the ‘hopping’ mechanism. As this approach is 
essentially non-adiabatic, there is no need to incorporate additionally the concept of 
Berry’s phase in this case. The correct phase of the system (which includes both the 
dynamical and geometrical components) is automatically included in this formalism. 
In section 5, a comparison of all the above approaches is presented with particular 
attention being paid to the contribution to 6 from the hopping mechanism. 

2. Background 

Among the first papers to discuss the idea of tunnelling in JT systems were those 
by Bersuker (1961, 1962). (Note that the mathematical error in Bersuker (1961) is 
corrected in Bersuker (1975).) In this work, vibronic states were constructed from 
linear combinations of Born-Oppenheimer (Bo) states (a product of an electronic 
state with a localized harmonic oscillator state). Anisotropy in the shape of the wells 
and non-orthogonality of the basis states were included. A similar approach was 
developed by Judd and Vogel (1975) in terms of the so-called coherent states and in 
a series of papers by Dunn and Bates using their transformation method (e.g. Bates 
et a1 1987, Dunn 1988, Dunn and Bates 1989). Judd and Vogel (1975) neglected 
anisotropy in the wells whereas it was included using a perturbation approach in the 
work of Dunn and Bates (1989). All of these papers start with the BO approach and 
add in non-adiabaticity by diagonalizing the exact Hamiltonian of the system which 
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includes non-adiabatic terms. Thus these approaches go beyond the crude adiabatic 
(BO) approximation contrary to the statement of Ham (1972, 1990). Meanwhile 
Cleqaud and Cbte (1992) extended the original work of Bersuker (1962) by going 
beyond the crude adiabatic approximation in their basis states by adding in higher- 
order corrections to the adiabatic wave functions with respect to the displacements 
of the nuclei relative to the minimum positions. 

One approach to the problem of calculating vibronic energy spectra and thus the 
inversion splittings uses direct numerical diagonalization of the exact Hamiltonian 
expressed in a matrix form using as a basis a set of states appropriate to zero 
coupling. The first paper using this approach for the T@ system was by Caner 
and Englman (1966). The method was extended by Englman et a1 (1970). Later, 
Sakamoto (1982) used the same approach to obtain the energy levels of the E @ e  
problem including the quadratic warping terms and very recently, O’Brien (1990) 
reconsidered the T@ t2 problem. In these latter papers, the Lanuos method was 
adopted so that much larger basis sets were used. As the main purpose of the 
work is the calculation of the asymptotic behaviour of 6 in the strong-coupling 
limit, the use of a zero-coupling basis set is far from ideal. The main errors are 
introduced by the necessity to exclude basis states containing a large number of 
phonon excitations, which can make significant contributions to the asymptotic value. 

Another approach has been to use only the ground sheet in the potential 
energy surface in which the calculations are carried out within the framework of 
the adiabatic approximation. The first paper was that of OBrien (1964) for the 
E @ e  system including the warping terms as well as anharmonicity. The calculation 
was numerical and involved the one-sheet adiabatic energy spectrum of the nuclear 
system. Later, O’Brien (1969) extended this approach to the calculation of the 
energy spectrum of the linearly coupled T 8 (e  + t2) JT system while Lister and 
O’Brien (1984) used the same approach to the more complicated case including 
tunnelling amongst the orthorhombic wells. In all the above cases, the tunnelling 
splittings have also been obtained. An alternative treatment within the one-sheet 
adiabatic approximation is that of Polinger (1974) using the quasi-classical WKB 
approximation. An expression for 6 in the E @ e system was derived for the first 
time and justified the approach quoted originally by Sturge (1967). Polinger (1974) 
also quoted the expression for 6 in the more complicated case of T@t,. It appears 
that the w x j  approximation is more accurate for the calculation of the limiting 
values of 6 in this one-sheet tunnelling scheme as it is free from the problems 
generated by the cut-off of the basis set present in the adiabatic numerical methods 
mentioned above. 

It is clear from figure 3 of OBrien (1990) that there is a noticeable difference 
between the values obtained for 6 in the non-adiabatical numerical calculation of 
O’Brien (1990) and the W B  calculations by Polinger (1974) beginning from the 
intermediate-to-saong-coupling regime around k = 5 (where k is the dimensionless 
vibronic coupling constant to be defined later). As the WKB calculation gives a 
smaller value of 6 with k > 5 than that found numerically, it would appear that 
other mechanisms exist whereby the system can move from one well to another. 
We believe that these differences originate from the nonadiabatic hopping and will 
become greater and very important with increasing k. 
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3. The calculation of the tunnelling splitting from the adiabatic one-sheet WKB 
approximation for the linear T @ t, Jahn-Teller system 

3.1. The kinetic and potential enei@es 
For simplicity, we assume that only one set of the t2 vibrations is involved in the 
vibronic coupling. The Hamiltonian for the system is given by 

where 

V 2 Polinger et ai 

H = HHvib + 'Hint ( 3 4  

and where: 

Here V, is the linear vibronic coupling constant, Q, are the normal coordinates 
transforming as the Tz representation of the corresponding cubic group having 
transformation properties such that Q( - yz, Q, - IZ and Qc - zy. Py are 
momenta conjugated to QT,pT(= p )  is the ligand mass, U,(= w )  is the frequency 
of the Tz vibrations, and T' are orbital operators for the 1 = 1 orbital triplet such 
that Tsy = ;&(1&. + luLz)  etc. 

In the case of very strong vibronic coupling (V, -+ CO), it is convenient to perform 
a unitary transformation to the adiabatic electronic basis functions, +,(r,  Q), where 
T represents all the electronic coordinates and Q = ( Q E ,  Q,, Q(). In this basis, the 
matrix of the potential energy 

is diagonal, and its eigenvalues are the adiabatic potentials, .,(Q) (n = 0, 1, 2). ks 
a consequence, the kinetic energy 

U = f w ~ ~ ( Q ;  + Qf, + Qt) +'Hint (3.4) 

has a non-diagonal matrix form. The extended adiabatic approximation is obtained by 
neglecting the off-diagonal matrix elements of the kinetic energy. The eigcnfunctions 
of the Hamiltonian (3.1) can then be written in the multiplicative form: 

where the x ( Q )  are eigenfunctions of the one-sheet adiabatic Hamiltonian (from, for 
example, O'Brien (1989), equation (5.5)): 

of the nuclear system where E,(Q)  is the energy of the nth sheet. 
It is well known (see, e.g., Opik and Pry- 1957) that, in the T@ t2 system, 

there are four equivalent trigonal minima in the lowest potential sheet eu(Q) having 
coordinates in the ( Q E ,  Q,, &() space: 

W T ,  4) = +,(T, Q ) x ( Q )  

'H, = -- :hzA + €,(Q)  - $hz(+, I A+") 

(3.6) 

(3.7) 

Ql = (qu94u3 -qu) 

Qz=(qu,-qu,qu) Q4=(-q~,-qu,-qu) (3.8) 

Q3 = (-4u, 9",4") 

with qu = V, / ( f ipw*) .  The corresponding JT stabilization energy E, = -E,  
where Ert = V;/(2pwz). The trigonal wells are separated by sbt orthorhombic 
saddle points at a depth of qht. 
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3.2. The ertended Bom-Oppenheimer approximation 
Consider the limiting case of infinite vibronic coupling (V, + w) ,  when the effective 
height ( a  kt) of the potential barrier between the wells tends to infinity. The nuclear 
motion is then strongly localized at the bottom of the trigonal wells. From (3.6), the 
corresponding groundstate eigenfunctions of the Hamiltonian Zu of the ground sheet 
are the three-dimensional harmonic oscillator wave functions: 

xi(Q)=&(Q-Qi) i = l , 2 , 3 , 4  (3.9) 
having corresponding normal frequencies as given, for example, in Opik and Pryce 
(1957). 

In the absence of tunnelling, the states (3.9) localized in the wells are fourfold 
degenerate due to the equivalency of the minima. With the tunnelling added, this 
fourfold degeneracy is split into a ground-state vibronic triplet and an excited vibronic 
singlet. In order to obtain this tunnelling splitting, Bersuker (1962) used perturbation 
theory. The zeroth-order basis states qj") used were those obtained from the BO 
approximation in which Wed electronic wave functions were multiplied by localized 
oscillator states (3.9) in the form 

q; (m) - - &(T,Q;)@',(Q - Qi). (3.10) 

In contrast, we follow here the method of O'Brien (1989) and use the extended 
BO or 'crude adiabatic' approximation for the T 8 t2 system in which a single-sheet 
adiabatic approximation is used. In order to obtain the correct ordering of the lowest 
vibronic energy levels, it is necessary to analyse the Berry's phase which must be 
introduced for any closed path in &-space which circles a point of degeneracy (if 
any) in the adiabatic potential energy surfaces c,(Q) (Ham 1987, 1990, O'Brien 
1989). 

The energies and EA of the ground vibronic triplet and singlet respectively 
are (O'Brien, 1989) 

EA = (Hll -3H12)/(1 - 3s12) % = (H1l  + H12)/(1 + s12) (3.11) 

where 

Hij = ( ~ ; l H u l ~ j )  s;j = (xi I xj) (3.12) 

are the matrix elemenls of the Hamiltonian Ho given by (3.7) for the ground sheet 
and the overlap integrals respectively calculated with the localized wave functions xi 
from (3.9). It follows that the energy gap 6 separating the ground vibronic triplet 
from the excited vibronic singlet is given by (O'Brien 1989) 

6 = - 6 = 4 r  (3.13) 

where 

AIthough these expressions for 6 look similar to those obtained previously by 
Bersuker (1962) (but see also Bersuker and Polinger 1989), there is an important 
difference. In Bersuker (1962), the Hij are matrix elements of the exact Hamiltonian 
(3.1)-(3.3) calculated with the BO wave functions (3.10) by substitution into equations 
(3.13) and (3.14). However, in O'Brien (1989), the Hsj are matrix elements of the 
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apprarimafe adiabatic ground-sheet Hamiltonian (3.8) calculated with the adiabatic 
nuclear ground-state wave functions xi  = $o(Q - Qi ) .  Thus the O’Brien approach 
is a one-sheet adiabatic approximation whereas the Bersuker approach includes non- 
adiabatic contributions to 6 coming from the offdiagonal matrix elements of the 
kinetic enera, operator. As a result, the tunnelling probability l7 found by the 
Bersuker (1962) method is a factor of about 1.78 larger than the adiabatic result of 
O’Brien (1989). 

Another important feature arising from the expressions (3.13) and (3.14) is that 
the tunnelling probability is expressed in terms of resonant and overlap integrals 
connecting the states x1 and xz localized in two neighbouring wells only. Thus the 
four-wells tunnellingproblem in question ir reduced to a much less complicafed hvo-wells 
problem. 

3.3. Calculafiom and the results 

lb proceed with our own calculations, we make use of the fact that, close to the 
line of steepest slope connecting, for example, the minima Q1 and Qz via the 
orthorhombic saddle point at Q,, = (0, 0, 3qu/2), the adiabatic potential energy 
surface ao(Q) appears as a strongly warped trough. Nuclear motion in this region 
can be approximated to harmonic osdlations perpendicular to the trough and to 
tunnelling along the trough. This means that the three-dimensional nuclear motion 
can be separated approximately into three independent one-dimensional motions. 

An approximate way to obtain an appropriate set of new generalized coordinates 
along and perpendicular to the trough, the procedure used originally by Opik and 
Pryce (1957) has been adopted. The method is based on the idea that when the 
matrix U is diagonalized to obtain the transcendental equations for the extrema, the 
following system of coupled equations arises: 

U14 = €14) (4 I 4) = 1 W a Q ,  = 0. (3.15) 

In matrix representation, the eigenfunction $(T, Q) is just a column vector which 
may be written as 

V 2 Polinger et a1 

(3.16) 

in the space spanned by the real electronic basis states of the T term in question. 
On substituting the matrix U from (3.4) into the coupled equations (3.19, we obtain 
(Opik and Pryce 1957) 

Q< = ~ ( V T / I L W ’ ) ~ , ~ ,  Q, = 2(15/ IL~z)a ,az  Q c  = ~ ( V T / I L W ’ ) ~ , ~ ,  
(3.17) 

with U’, + ut + a: = 1. In this way the adiabatic potential energy surface e”(&) is 
mapped onto the unit sphere a$ + a t  + U :  = 1 (OBricn 1969). The extrema of 

in Q-space correspond to the points piercing the unit sphere in a-space on the 
symmetry axes of the cube namely [ l l l ] ,  [llO] etc. Therefore the line of steepest 
slope is the one which links, say, the points [lll], [110] and [ l l i ]  by the shortest path 
on the surface of the unit sphere (figure 1). Ttansforming to the spherical coordinates 

a, = cosqcos0 a, =sinqcosB aT =sin0 (3.18) 
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and substituting them into (3.17) with the additional condition ~p = x/4, we obtain 
expressions for the approximate line of steepest slope in threedimensional Q-space 
in parametric form (Polinger 1974): 

QE = Q, =[vT/(/dfi)]sin28 Qc = [VT/(2pw2)](l+coS28). (3.19) 

From (3.9), the values 8 = -I$ cos-I 4 give the trigonal minima Ql and Qz and 0 = 0 
gives the orthorhombic saddle point in between them. Generally, on substituting (3.8) 
into (3.17) we obtain expressions which suggest a transformation into new coordinates 
in &-space, namely 

QE = qsinpsin28 Q,, = qcos~psin20 Qc = qSin2'pco~~ 0 (3.20) 

with q = VT/pw2 and ~p = ~ / 4 .  Also the line of steepest slope is parallel to the 
6'-axis. Note that, as was kindly pointed out by F S Ham and M C M O'Brien (private 
communications), the curve (3.20) above does not correspond exactly to the line of 
steepest slope, but is an approximation. However, we believe that it is sufficiently 
close to the exact line to obtain an accurate estimate of the tunnelling splitting energy 
gap in the WKB approach. An estimate of the accuracy of this approximation will be 
given in a future publication. 

Flgum 1. The unit sphere 0: + a t  -I- a: = 1 
with the lines mapping the equipotential sections of 
the lowest sheer of the adiabatic potential energy 
surface f g  and with the poinu piercing the unit 
sphere on rhe symmetry axes [ill], [I101 etc (solid 
points). The line of steepest slope linking the 
orthorhombic saddle p i n t  [llO] wilh the minimum 
p i n t s  Q1 and I& is mapped by the broken line. 

An important advantage of using the coordinates q, p, 0 introduced in (3.20) 
is that, in the (q, 'p, 0) space, the ground-sheet adiabatic electronic wave function 
& ( T ,  Q )  remains real, single-valued and everywhere continuous except at singular 
points. This differs from the double-valued mapping introduced by OBrien (1989) 
and corresponds to the alternative approach of Ham (ISSO). 

The geometry of the ( q ,  'p, 0)-space is determined by the metric tensor, having 
elements 

gib = x(aQ,/a+;)(aQ,/az,) ( i , h  = 1,2,3) (3.21) 
Y 
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where x1 = q, x2 = p, x g  = 0. In terms of the new coordinates (equation (3.20)), 
the kinetic energy operator has the form (Kom and Korn (1961), section 16.10-7) 

T = -4@( Igl)-”’ C ( a / a z i  )(Gik( 1g1)’/2(alaxk) /@ (3.22) 

where 191 = det(g) and G = g-l. Substituting (3.20) into (3.21) we find that the 
metric tensor is nondiagonal and hence the coordinates q, ‘p, 0 are non-orthogonal 
and therefore non-separable. However, as mentioned above they can be separated 
approximately. 

We use the fact that the tunnelling splitting 6 is much smaller than the vibrational 
quantum which separates the energy levels of the (q, p) system. Therefore, we can 
use the BO approximation by assuming that the tunnelling motion in 0 along the 
trough to be slow whereas the oscillations in q and ‘p which are perpendicular to 
the direction of the trough are taken as fast. Thus the ground-state nuclear adiabatic 
wave function x i ( & )  can be presented in the multiplicative form: 

x i (Q)  = R(d@(V)@i(e )  (3.23) 
where R(q)  and @($CY) are the ground-state oscillator wave functions localized at 
the equilibrium positions q = VT/pwz  and ‘p = ~ / 4  respectively and Oi(B) is the 
ground-state wave function in the one-dimensional 0-space localized at the bottom 
of the ith well. Substituting the kinetic energy operator (3.22) into the adiabatic 
one-sheet Hamiltonian (3.7) and averaging over q and ‘p with the oscillator wave 
functions R(q)  and @(‘p) we arrive at the following one-dimensional Hamiltonian 
for the tunnelling system: 

(3.24) 
where m is the corresponding effective mass 

(3.25) 
and 

(3.26) 
The double-well potential energy determined by (3.26) is shown in figure 2. 

Using the multiplicative form (3.23) of x i ( Q )  enables us to integrate over q and 
p in Hij and Sij  introduced in (3.12). Then the tunnelling probability (3.14) can be 
expressed in terms of the remaining integrals over 8, namely as 

r = hllsl2 - hl2 (3.27) 
where 

hij = (OilhlOj) s.. r3 = (0; I O j )  (3.28) 
and h is given in (3.24). The expression (3.27) for r can be simplified by noting that, 
up to second-order terms with respect to the overlap integrals sij, i # j (see the 
Appendiv A)./ 

1- O , ( ~ ) h O , ( O ) d ~ ~  h,, - isIth, ,  (3.29) 

Lm o,(e)ho,(e) do ;S,2hll (3.30) 

t Though 0 is determined in fhe interval from -1. Lo in, the integral over 0 can be extended to 
m because lhe wave function Qt(6’) decreases aponenlially in the classically reslricled region 0 > c 
(figure 2) so fast that, for very strong vibronic coupling, the integral cut-OR w u r s  for 6 < 1.. 

V 2 Poiinger et a1 

i k  

h = -(h2pm(e))a2/ae2 + .(e) 

m( e )  = sq; cos2 (e/2)(4 - 3~0s’ e) 

.(e) = &,&~3sin’ 28 - 4(c0s4 o + 4sin’ 2e)1/2]. 
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0.3 ” 1  

FIgure 2. Section of  the adiabatic potential energy surface used in the WKB calculation 
plotted as a function of B (with q = VT/pwz,  1p = ,r 14) and the ground-state energy 
level (in units of ht). The energies are measured relative IO the bottom of trigonal 
wells. The numben 1 and 2 label the wells for which the minima are Q1 and Q2 
respectively. 

and hence 
m 

r = bm o,(e)fio,(e) de  - o,(e)fio,(e) de. (3.31) 

By integrating the first term in (3.31) twice by parts and using the relations 
@,(e) =@,(-e) and @;(e) = -@,(-e) gives the result 

e,(o)o;(o) - i i ~  o ; ( e ) ( m - l ( e ) p , ( e ) d e  ii2 r=-  
m(0) 

m 
- o,(e)o,(e)(m-’(e))l’ae. 

(3.32) 

Compared to the first term in (3.32), the second and third terms are of order of 
( kt/hu)-’ and ( respectively and therefore they can be neglected in 
the limit of very strong vibronic coupling. Then 

r (tiz/m(o))o,(o)o;(o). (3.33) 

This result coincides with the well known result of Landau and Lfishitz (1974) 
obtained for the simpler case of tunnelling within a two-well system having a constant 
mass. 

?b obtain the eigenfunctions of the Hamiltonian (3.24), we use the WICB 
approximation. In the region under the barrier, the ground-state wave function is 

(3.34) 

where p(e) = [zm(e)(u(O) - EU)]’/’, .(e) = p(O)/m(B), where E, is the ground- 
state energy in the well, U, = 2EJh is the frequency of the oscillations at the bottom 
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of the well and b is the classical turning point at the exit from the forbidden region 
under the barrier to the well number 1 in figure 2 Substituting (3.34) into (3.33) and 
then into (3.13), we finally find 

V Z Polinger et a1 

where a is the classical turning point at the entrance in the forbidden region under 
the barrier (see figure 2). We note that this result verifies the correctness of the 
expression for 6 given in Polinger (1974) and Bersuker and Polinger (1989) where 
the result had just been guessed from the analogous result in the E @ e  case. 

The expression for 6 has a clear-cut physical meaning. r represents the probability 
of decay per second of the metastable state in the well. Indeed, r is proportional 
to the number of 'particle' wllisions with the barrier wall per second, w1/2x ,  and to 
the probability 

of tunnelling through the barrier at each of these collisions. 
The tunnelling splitting 6 given by (3.35) can be calculated numerically. Figure 3 

shows a plot of - In(4r/hw), calculated by numerical diagonalization of the exact 
Hamiltonian (3.1)-(3.3) by Caner and Englman (1966) and by O'Brien (1990) and 
by numerical integration of equation (3.35). It is clearly seen that the results of 
the adiabatic one-sheet WKB approach are remarkably close to the numerical results 
obtained by the direct diagonalization of the Hamiltonian matrixt. However, note 
that, beginning from k2 e 12, where k (= [3&J(2h~)] ' /~)  is the dimensionless 
coupling constant, the exact value for 4r becomes somewhat larger than the WKB 
result. This difference increases smoothly with k. For example, at k = 5 we find the 

indicates that, if the vibronic coupling is sufficiently strong, an additional method of 
penelration from one well to another becomes important. As the adiabatic tunnelling 
mechanism is completely described by the expression (3.39, the only other possible 
mechanism is by motion over the barrier. Thus we believe that non-adiabatic hopping 
over the barrier occurs via the excited sheets of the adiabatic potential energy surface. 
The approximate line of steepest slope (3.20) overestimates both the height and width 
of the potential barrier separating the trigonal minima, and thus underestimates the 
one-sheet tunnelling. However, we believe that the above results are sufficiently 
accurate to enable us to conclude that, for sufficiently strong vibronic coupling, 
the non-adiabatic hopping via excited sheetS becomes as important as the one-sheet 
tunnelling penetration through the potential barrier. 

Finally, a convenient formalism to describe the tunnelling splitting energy gap was 
proposed by O'Brien (1990) with the relation 

(3.36) 

t Our figure 3 looks very similar to figure 3 of O'Brien (1990) where the same comparison of the original 
WKB results with the numerical resulls is presented However, there is a slighl difference in our WKB 
cuwe comparcd with the one given in O'Brien (1990) due to a small modification of the @dependence 
of the effective mass. Neverlheless, this does not affect the main eonelusion in O'Brien thal her exact 
numerical resulls are in very g o d  agreement with the WKB resulls. 

ratio of the numerical to WKB splitting to be given by 4rnnmeria, /4rwD = 1.55. mis 

I n ( 4 F / h )  = a + b In(k) + ck2. 
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FLgure 3. The natural logarithm of the tunnelling splitting 6 in units of hw plotted as 
a function of kz(= 3&/(Zhw)). The full line represents the results of numerical 
integration of equation (3.35) and the broken line corresponds lo the coincident results 
of Caner and Englman (1966) (for k < 2) and of O’Brien (19%). 

In the limiting case of very strong vibronic coupling, a, b and c tend to the values 

a =0.6394 b =  1 c = -0.722436 18. (3.37) 

Figure 4 shows the absolute (A) and percentage (0) error of this fitting demonstrating 
satisfactory accuracy of the approximate expression (3.36) with the parameter values 
given by (3.37) beginning with k rr 10 (or In( I C )  rr 2.3). 

Figure 4 The absolute error 

A (= I n ( 4 r ~ / h w )  - In(4rappmr/hw)) 

(full line, scale on the left) and lhe percentage e m r  

n (= ( A / I n ( 4 r w ~ s / h w ) )  x 103) 

(broken line, scale on the right) in the fitting 
of the WKB result (3.35) by the approximate 
expression (3.36) with a = 0.6394, 6 = 1 and 
c = -0.72243618. 

4. A numerical calculation of 6 using strong-coupling basis states 

This section describes a completely different and new calculation of 6 for the 
T @ JT system. It is numerical but uses the symmetry-adapted states generated 
from the transformation methods of Bates et a1 (1987), Dunn (1988) and Dunn 
and Bates (1989) as basis states. This transformation method was devised for 
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strong& coupled systems and the starting point involved vibronic states appropriate 
for infinite coupling. Linear combinations of these states were then chosen (Dunn 
1989) which restored the cubic symmetry to the problem. This section describes a 
calculation of 6 using these states in a numerical diagonalization of the matrix of 
the total Hamiltonian for the system. Thus all aspects of tunnelling and hopping are 
automatically included in the analysis. A further point of considerable interest is that 
the basis set is complementary to the basis set used by others (e.g. OBrien 1990) 
which are appropriate in the weak-coupling limit. 

4.1. Numerical evaluation of the inversion splitting using .lymmetty-adapted states 
Before the calculation can proceed, it is necessary to examine the validity of the basis 
set. Thus the positive-definiteness of the overlap matrix must be investigated first in 
order to determine if the states are a physically valid set for the range of coupling 
strengths to be used. As a starting point, the basis set given in Dunn and Bates 
(1989) containing the cubic ground states and the infinitely coupled excited states was 
investigated first. Then the check was extended to consideration of the cubic excited 
states derived in Dunn (1989). Details of these investigations are given in Appcndiv 
B. Having established that a valid set of basis states for the T @ t, system has been 
produced, a calculation of the inversion splitting 6 can proceed. 

The total Hamiltonian 31 for the T@ t, JT system is given in equations (3.1)-(3.3). 
The matrix elemenfs of 31 and of the overlaps are evaluated using the symmetry. 
adapted basis set of states written as l!P(l,m, n)) (where 1, m, n denote the number 
of phonon excitations of symmetry yr, zz, +y respectively) and given explicitly in 
table 2 of D u m  (1989). The calculation involves determining matrix elements of the 
form 

V Z Polinger et a1 

Ai,j = (~~(l,m,n)l31l!Pj(P,q,r)).  

This in turn leads to the calculation of matrix elements of the functional states 
IT+(l,m,n)) and IE(l ,m,n))  (Dunn 1989). 

For the ITr(l, m, n)) states, we have 

(Tz(1, m,  n)WIT+(P,q, r ) )  = fwT{4[(~+ 4 + t 2 )  - ~x,16p,6qm6,  

t SI[(-l)mtn(H(1,q,r,m,n)6pi t K ( P , q , r , 1 7 m , n ) )  

- ( - l ) P t " ( H ( m , ~ ,  r71, n)6*,,, - Ic(q,  P , ~ , L  m, n)) 

- (-l)Pt'"(H(n,~,q, 1 ,  m)6, - Ic(r,p,q,  n,l ,  m))lI (4.1) 
and for the IE(i, m, n)) states we have 

(E(l ,  m,n)lxlE(p, q,  r ) )  = ~ T I ~ [ ( P  t 4 + r + $1 - $X,16pi6,m6,, 

+ 4 1 ( - 1 ) m t r ( ~ ~ 4  q, ~ , m ,  nPp,  - WP, q, r,1, m, n)) 

t ( - 1 ) " ' ( H ( m , ~ , r , I , n ) 6 ~ ~  - K ( q , p , r , L m , n ) )  

t (-1)""(H(n,p,q, l,m)6,, t I c ( r > ~ , q , n , L m ) ) l I .  (4.2) 
Dunn (1989) also gives expressions for the overlaps of the same functional states 

in the form 

R , j  = (wi(l,m,n)lwj(p,q,r)) (4.3) 
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such that 

where 

&ZZ(-XZ)k 
k ! ( m  - k ) ! ( k +  n - m)!.  2 F ( m , n )  = 

k=mu(0,??%-,) 

We need to sohre the general symmetric eigenvalue equation 

A@ = AB@ (4.9) 

where A and B are the two matrices of the Hamiltonian and the overlap respectively 
and X are the eigenvalues. As the basis states are symmetrized, the matrix A will be 
in block form. One block contains all the A, states, a second block the 4 states and 
so on. Similarly, matrix B is also in block form. Hence each block of the matrix for 
each representation can be solved separately. 

Looking at the energy diagram for the T, €3 t, JT system presented in figure 1 of 
Dunn (1989), it can be seen that the two lowest energy levels are due to states that 
transform at TI and 4. Thus to find the inversion splitting 6 we need to evaluate 
the new eigenvalues of the TI and A, blocks of the matrix only. It should also be 
noted that states in the same representation but with different components do not 
mix. Hence each block can be broken down further into blocks for each component 
and sohred individually. 
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4.2 Numerical techniques 

As 1 ,  m, n represent the number of phonons excitations in a particular mode, there 
is an infinite number of excited states which can be included in the system so that the 
basis set is infinite. As a result, some choice of the size of the matrices A and B must 
be made. This is defined by the computing capacity rather than by theoretical design. 
By limiting the total number of phonons ( N  = 1 + m + T Z )  to some finite value by 
excluding states with more phonons, the matrix size can be varied in a sensible way. 
The resulting eigenvalues and eigenvectors can then be compared for each value of 
N .  

Another choice to be made is the nature of the numerical algorithm to be used 
bearing in mind that the elements of the matrices A and B vary in size by many 
orders of magnitude as we change from the moderate- to strong-coupling regime. 
As a result, the calculation has been undertaken for values of KT ranging from 1.3 
to 4.5. The lower value of KT was set from the nature of the overlap matrix. As 
discussed in Appendix B, the overlap matrix in this region approaches singularity. As 
a result, any small numerical rounding errors that may occur in the routine could 
cause the overlap matrix to appear non-positive-definite. The upper limit on KT was 
set by determining where the resultant inversion splitting was less than the numerical 
accuracy of the routine. The cut-off in the maximum number N of phonon excitations 
was set to 3, 8, 10 successively. The resultant numbers of states for each matrix are 
given in table 1. 

V 2 Polinger et a1 

Table 1. The number of cubic states with excitalions less than or equal lo N tor each 
repmntation. The column labels Ti and A2 denote the symmetry' components of the 
vibmnic states. 

N T? A2 

3 18 7 
a 9s 41 

10 161 67 

Figure 5 shows the results of the calculation of 6 (but plotted as -ln(6/h+) 
for display purposes) as a function of K T / h  for each of the three values of N 
given above. For comparison, figure 5 also includes the analytical calculations of 6 by 
Dunn and Bates (1989) for KT/tW, in the range 2.C-25. This range is chosen as it 
shows most clearly the differences between the different methods. (For comparison 
purposes, the figure also includes the WKB results of section 2 and the calculations of 
O'Brien (1989).) 

We compare here our numerical results for 6 with our previous analytical results. 
The latter were obtained from what is virtually a tunnelling model although the 
anisotropy corrections did invoke some parts of the excited sheets by modifying the 
shape of the potential wells in each minimum. Figure 5 clearly shows that the 
numerical results derived here for N = 8 and 10 decrease the value of -In 6 (which 
means that 6 increases) compared to the approximate analytical result. We deduce 
that this increase in 6 is caused primarily by hopping. Also, the higher N, the larger 
is the magnitude of this increase. It is also clear that the incorporation of even larger 
values of N into the numerical calculation becomes increasingly important as KT 
increases. This is because the value of IC;. at which the curves of the numerical 
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7.0 

6.4 

g 5.8 

2 5.2 

I - 
D 

4.6 

4.0 
2.0 2. I 2.2 2 9  2.4 2.5 

Figure 5. Plofs of In 6 versus K ~ l h q .  (= k/&) for the following. Key: 3, 8 and 
10 show the numerical results I” section 3 for 3, 8 and 10 phonons mpeaively, F 
reproduces the analytical results of Dunn and Bates (1989); H shows the WKB calculation 
from section 2; I gives the numerical rcsulfs of O’Brien (1990). 

results approach the analytical results increases with N .  This is expected as the 
increased number of excited states included in the calculation increases hopping. We 
note also that, for N = 3, little reduction in - In 6 has occurred because the few 
extra states have little effect on the analytical result. Obviously, we need to attempt 
much larger values of N in order to determine the variation of this enhancement of 
6 with N but this requires a much larger computing capacity (but see below). 

An altemative method of presenting data on the inversion splitting was given in 
figure 2 of Dunn and Bates (1989) by plotting [ln(6/hwT) - In(&/hq.) - In S,] 
against Ert/+ in which a straight line (having a gradient of ( i  - b) and an intercept 
of In a) would result if 6 satisfied the relation 

(4.10) 

where a and b are parameters suggested by earlier works. Figure 6 repeats this plot 
but with the WKB results of section 2, our new numerical results, and those of O’Brien 
(1990) and others superimposed. These curves clearly show that all the more recent 
calculations depart from the simple form (4.10) above but such a display does not 
easily convey information on hopping. 

5. Discussion and conclusions 

The first calculation of 6 by the WKB approximation for the T@ t, JT system has been 
presented in section 2 The results obtained prove the correctness of the formula 
quoted previously without proof by one of us (Pohger 1974). The model describes 
adiabatic one-sheet tunnelling mechanisms only. In contrast, the numerical methods 
cited previously must contain both tunnelling and hopping and thus the contributions 
to 6 from hopping alone can be obtained by direct subtraction. Improvements in 
the WKB calculation can be made by incorporating second-order corrections which 
describe hopping from one well of figure 2 to the other well via the excited states. 
These calculations are not yet complete and will be reported later (Kirk et al 1993). 

It is clear from figure 5 that the numerical results of section 3, using basis states 
appropriate for very strong coupling, differ from the numerical results of others (e.g. 



2228 V 2 Polinger et a1 

c 
9 E, / huT ; 0.0 

4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Fi&~~re 6. Plots 01 ln(S/Ay) - In(f i / t iq)  -In Sr as a lunclion of h / r W ,  for the 
following. Ky: A: Caner and Englman (1966); C Schulz and Siblcy (1974); D Schulz 
and Siblcy (1974). with cffeclive frequencies; E Bemuker and Polinger (1989); P: Dunn 
and Bates (1988); C: Dunn and Bats  (1989), including anisotropy; H: the wRB ruults 
f” Mclion 2; I. O’Brien (19%); 3.8 and 10 lhc muits from &ion 3, for 3-, 8- and 
10-phonon acihlions resptiveiy. 

O’Brien 1990) in which basis states appropriate for weak coupling are used Both 
kinds of numerical calculations include tunnelling and hopping but direct comparisons 
between them cannot be made until the range of N used in section 4 has been 
markedly extended. This work is planned for the immediate future and it is hoped to 
report the results shortly (also in Kirk et a1 1593). However, the question posed in 
this paper has been answered partially by the detailed calculations reponed above in 
that tunnelling and hopping both contribute to the inversion splitting. Further work 
described above is needed for a more accurate assessment of the relative amounts of 
the two processes. 
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Appendix A. Overlap integrals sij for the WKB approximation 

Consider the matrix representation of an Hermitian operator F in a non-orthogonal 
basis set {+(’)} such that the overlap integrals ($(;) I $(j)) are small compared with 
unity. If the set of functions {$(;)} is complete, then any arbitrary function satisfying 
the same restriahe conditions as G(i) (e.g. can be integrated and is single-valued) 
can be expanded in terms of the basis states $(;). In particular, 

k 

Correct to secondader terms with rspect to the overlap integrals, it is easily seen 
that 
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where K k  = (+(i)lFl$(k)) are matrix elements of F. With an orthogonal basis set 
(when Sib = 6ik), the expressions (Al) and (A2) reduce to the well-known relation 

Consider for instance the simple case of a two-dimensional linear vector space i, 
k = 1, 2. To find the four unknowns Cf), we multiply the expression (Al) from 
the left by +(j) and integrate. From the resulting system of inhomogeneous algebraic 
equations, we obtain: 

cp = qk. 

c? = ( F n -  F12~21) / (1 -  I ~ 1 2 l Z )  = 4 1  

cl" = (F1, - Fllslz)/(1- IS1,lZ) = FlZ - FllSI, 

cl"' = (F22 - FZIS1,)/(1 - lSI2l2) = FZZ. 
C? = (F'i - Fm%i)/(l- lSi#) 41 - Fzzszi 

These expressions coincide with (AZ). This calculation can be generalized easily to 
the case of an ndimensional vector space with n arbitrary. 

In order to apply this result to the double-well tunnelling problem described by 
the Hamiltonian (3.24), the states localized in the wells are renumbered from 0 to 
03. Let $? ( j  = 0, 1, 2, 3,. . .) be localized in the first well and +p) ( j  = 0, 1, 2, 
3,. . .) in the second well., Using this notation, (Al) and (A2) become 

and h is given in (3.24). Multiplying (A3) from left by +f) and (A4) by $?) and 
integrating from 0 to CO (see the first footnote in section 3) we obtain 

where (...)+ means integration over 0 from 0 to CO. Noting that h c )  = h(ju) 22 7 

with respect to e), we find, correct to second-order terms in the overlap integrals, the 
results 

$0) 11 - - sZ2 0'0) and (G2 (U)[ (0) )+ = ($10' I $?) = 4s;:) (due to inversion symmetry 

(A*) 

(-49 

-h(") 1 (W) (W) (+Pl~l+P)+ - 12 - TSlZ 4, 
(+plhl+p)+ = TS12 1 (W)h(") 11 . 

These results correspond to (3.29) and (3.30) where the superscripts are omitted 
because Q1 and +2 in (3.27H3.30) are assumed to be ground states. 
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Appendix B. The positive-definiteness of the overlap matrix 

A standard procedure to show that a matrix is positive-definite is to look at the 
eigenvalues of the matrix and see if they are all positive. This procedure is good for 
working with small matrices but, in this problem, we have an infinite set of states and 
therefore a very large matrix with many eigenvalues. Hence another method must 
be found which does not require the evaluation of all the eigenvalues of the system. 
Consequently, we follow a method given in Bellman (1970). 

It states that a necessary and sufficient condition for a matrix A or order N to 
be positivedefinite is that 

V Z Polinger et al 

D, > 0 V IC = 1,2, ... , N (B1) 

(B2) 

where 
. .  

D, = laijI 2 , ~  = 1,2 ,..., k 
where ai j  are the elements of the sub-matrix A of order k. Thus, by looking at the 
determinants of all the overlap sub-matrices, we can determine whether the matrix is 
positive-definite up to order N .  This method has one advantage. If we have N states 
and these form a positivedefinite matrix, then we know that all the determinants 
of the sub-matrices of the N x N matrix are themselves positive. Adding an extra 
excited state so that the overlap matrix has dimensions of ( N  + 1) x ( N  + 1) requires 
the determinants of all the sub-matrices to be positive. However, we already know 
that the determinants for the N x N matrices are positive so that we only need 
evaluate the determinant of the (N + 1) x ( N  + 1) matrix. Furthermore, we know 
that the addition of the ( N  + 1)th state produces a physically valid basis set. Thus by 
an inductive method, we can check that the overlap matrix remains positivedefinite 
as we add more and more excited states appropriate for the infinite-coupling limit. 

To obtain the overlap matrix, it is necessary to evaluate the overlaps between the 
infinitery coupled excited states written in the form IXU(k)';4'P"") where X i k )  is 
the ground orbital state associated with well k and 1, n and n denote the number 
of phonon excitations of symmeby yz, zz and z y  respectively. The prime denotes 
that the states are written in an untransformed basis (see, e.g., Dunn 1988). Thus we 
need to evaluate the overlap 

(Xu (k)'-4f5m6R . I Xf).;4P5q6r) ( X r )  I Xf))(4'5"6R1LSfC'j14P5'6') 033) 
between two such excited states associated with wells k and j .  We find that this 
overlap becomes 
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where the D!jk) are derived from the coordinates of the Centre of the wells k and j 
and are given explicity as equation (13) of Dunn (1988). The other factors are given 
bY 

~ t ( j k )  = SUk) = 1 when i = j 1 

when i p j .  (B5) Opk) = -1 
3 and Spk) = SI 

It is found that the overlaps between a11 the excited states can be expressed in terms 
of the three overlaps: 

Mt(Ob)( l ,m,n ,p ,q , r )  = -LS(-X)m-* 3 1  F(p,  m)(X)n-rF(r, nVpr 

~ t ( O ~ ) ( z , ~ ,  n , p ,  4. .) = - ~ s ~ ( - x ) I - ~ F ( ~ ,  ~ ) ( X ) ~ - T F ( ~ ,  n)6 , ,  

M , ( a d ) ( i , m , n , p , q , r )  = -~s,(-x)'-PF( P 7 l ) ( - w m - q F ( q ,  mM,, (B6) 

where 
0 

a > b  
(-l)"(X)Z~ 

i ! (a  - i)!(i+ b -  a)! 
F(a,b) = 

i=max[lI,a -a] 

F(a, b)  = 0 a < b. (B7) 
The other overlaps are related to the above by symmetry. The overlaps between the 
cubic ground states and the excited states in the infinite-coupling limit are given by 
the relations: 

(Tz'(O,O,O) I Xiky;4'5m6n) = Nn (M:")(O,O,O,l, m ,  n,) 

+ M,(~')(o,o,o, 1 ,  m, n)  

-M,(~j)(0,0,0,1,m,n)-M,(bj)(0,0,0,1,m,n))  

(Ty'(O,O,O) I Xhk)';4'5m6n) = NTl (M:b')(O,O,O,Z, m,n,)  

+ Mt[dqo,o,o,l, m, n )  

-M:Qj)(o,O,o,l, m, n) - M:"j'(o,o,o,l, m, n ) )  

(Tz'(O,O,O) I X$k)';4'5m6n) = NT1 (MP)(O,O,O, l ,m,n , )  

+ M:dj)(o,O,o,l,m,n) 

-M1(Fj)(O,O,O,Z,m,n) - M,("j)(O,O,O,l,m,n)) (B*) 

where NT, are normaling factors (Dunn 1988). From the above, the determinant of 
the overlap matrix can be found 

As we have shown that the simple excited states generate a positivedefinite matrix, 
it is clear that the cubic combinations do so as well. 
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